Anelasticity of the asthenosphere inferred from GPS observations of ocean tide loading displacements in western Europe

Machiel Bos1, Peter Clarke2, Nigel Penna2, Trevor Baker3

1University of Beira Interior, Portugal; 2Newcastle University, UK; 3National Oceanography Centre, Liverpool, UK
SUMMARY

• Observed M2 ocean tide loading vertical displacements differ systematically from predictions by up to 2-3 mm in western Europe
• Discrepancies cannot be explained by credible model changes in ocean tides or elastic Earth parameters
• Anelastic dispersion with asthenospheric Q_μ constant from 1 Hz to ~2 cpd reduces discrepancies to ~noise
 – $Q \approx 70-80$, leading to 8-10% reduction in μ at M2 period

Acknowledgements
GPS data: NERC BIGF, IGN, EUREF, IGS. Tidal data: IHO, IAPSO, GLOUP data banks. ETERNA, GMT, NASA/JPL GIPSY software.
Funding: UK Natural Environment Research Council (PJC, NTP, TFB); Portuguese Foundation for Science & Technology (MSB)
Quality of GPS observations of OTL displacement

Effect of noise on 13.96 hr vector difference

\[r = 0.80 \]

See Penna et al. poster G04p-137
Residual OTLD

0.7 mm mean, 2.8 mm max

Modelled OTLD
259 sites

Observed OTLD
0.7 mm mean, 2.8 mm max

Ocean tide model
Density of sea water 1030 kg/m³

Earth structure
Ocean tide model errors

- DTU10, EOT11a, FES2012, GOT4.7, HAMTIDE, TPXO8 interpolated on to 1/16° grid and mean computed
- Standard deviation of M_2 vector differences from the mean shown here
- FES2012 agreements with coastal tide gauges and bottom pressure recorders:

<table>
<thead>
<tr>
<th>Region</th>
<th>Mean (mm)</th>
<th>Stdev (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cornwall</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>Celtic Sea</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>English Channel</td>
<td>80</td>
<td>26</td>
</tr>
<tr>
<td>West France</td>
<td>181</td>
<td>39</td>
</tr>
<tr>
<td>North Sea</td>
<td>32</td>
<td>13</td>
</tr>
<tr>
<td>Bristol Channel</td>
<td>229</td>
<td>63</td>
</tr>
<tr>
<td>Irish Sea</td>
<td>39</td>
<td>33</td>
</tr>
<tr>
<td>West Scotland</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Iberia</td>
<td>23</td>
<td>6</td>
</tr>
</tbody>
</table>
Dziewonski & Anderson (1981), PEPI
Holder & Bott (1971), GJRAS
Kustowksi et al (2008), JGR
Kennett et al (1995), GJI
Empirical Green’s function

- Surface: 50-80 km
- 15 km
- 24.4 km
- 80 km
- 50-80 km

- Scaling of \(\mu \) ↓ 10-11%

- 340-350 km
- 220 km

0.3 mm mean, 1.5 mm max
Shear dissipation and Q

- PREM seismic velocities valid at 1 Hz
- Q is constant from seismic to tidal frequencies?
- Shear modulus change, $\delta \mu$ (for freq ω, with $\omega_0 = 1$ Hz):
 \[\delta \mu(\omega) = \frac{\mu}{Q_\mu} \left[\frac{2}{\pi} \ln(\omega/\omega_0) + i \right] \]
- Our empirical $\delta \mu/\mu$ of -10% for M2 implies $Q \approx 70$
- Q_{PREM} has a min of ~80 in asthenosphere, reduces μ by 8.5%
 - above this, $Q_{\text{PREM}} \approx 600$, so effect of anelasticity is less
 - below, $Q_{\text{PREM}} \approx 150$, but depth too great to affect OTL values
SUMMARY

- Observed M2 ocean tide loading vertical displacements differ systematically from predictions by up to 2-3 mm in western Europe.
- Discrepancies cannot be explained by credible model changes in ocean tides or elastic Earth parameters.
- Anelastic dispersion with asthenospheric Q_{μ} constant from 1 Hz to \sim2 cpd reduces discrepancies to \simnoise.
 - $Q\approx$70-80, leading to 8-10% reduction in μ at M2 period.
