

UNCERTAINTY ON SEISMIC SOURCES AND BATHYMETRY FOR TSUNAMI MODELLING

26th IUGG General Assembly David Imbert | Ekaterina Antoshchenkova* Audrey Gailler | Hélène Hébert

30 JUNE 2015

www.cea.fr

Ces

TANDEM PROJECT

TANDEM : Tsunamis in the Atlantic and the English channel – definition of the effects through numerical modeling

> WP2 : influence of parameters and uncertainties

How do seismic source and bathymetry contribute to maximum water height?

Cea LISBON TSUNAMI (1755)

Cea OKADA'S MODEL (1985)

Surface deformation due to shear and tensile faults in a half-space

Function of geological parameters:

- Iongitude of the centroid of the fault
- latitude of the centroid of the fault
- **depth** of the centroid of the fault
- **slip** amplitude
- strike
- 📕 dip
- rake
- half length of the fault plane
- **width** of the fault plane
- shear modulus

FDTD FOR SHALLOW WATER EQ.

 $\begin{cases} \partial_t U + U \frac{\partial U}{\partial x} + V \frac{\partial U}{\partial y} + g_z \frac{\partial H}{\partial x} = C_F \ V \\ \partial_t V + U \frac{\partial V}{\partial x} + V \frac{\partial V}{\partial y} + g_z \frac{\partial H}{\partial y} = C_F \ U \\ \partial_t H + \frac{\partial((D+H)U)}{\partial x} + \frac{\partial((D+H)V)}{\partial y} = 0 \end{cases} \quad \begin{array}{l} \mathsf{U},\mathsf{V}: \text{ velocity field} \\ \mathsf{H}: \text{ water height above} \\ \mathsf{D}: \text{ depth of water at rest} \\ \mathsf{C}_F: \text{ Coriolis parameter} \\ \mathsf{q}: \text{ gravity} \end{cases}$

U,V : velocity field H : water height above mean water level D : depth of water at resting g₇ : gravity

- Function of bathymetry D
- \bigcirc O(Δx^2) upwind scheme from Mader (1988)
- $\square O(\Delta t^2)$ Crank-Nicholson scheme from Heinrich (1996)

DE LA RECHERCHE À L'INDUSTRIE

EX: JOHNSTON'S SOURCE (1996)

Water height variations over time

Maximum water height variations (*hmax*)

Cea

WIDE RANGE SOURCES

Johnston (1996)

- Baptista et al. (1998)
- Zitellini et al. (1999)
- Gutscher et al.(2006)
- Grandin et al. (2007)
- Horsburgh et al. (2008)
- and others !

Natural variability of known faults Variability due to unknown faults

DE LA RECHERCHE À L'INDUSTRIE

RANGES OF PARAMETERS

- **11** input parameters:
 - **long** [-18;-7] °
 - **lat** [34;40] °
 - **depth** [2;80] km
 - **slip** [2;25] m
 - **strike** [0;359.9] °
 - **dip** [1;89] °
 - **rake** [-179.9;179.9] °
 - **hL** [50;100] km
 - **width** [15;95] km
 - **mu** [30;70] GPa
 - **dx** [1;14] min

uniform distributions

Okada (1985)

MAXIMUM WATER HEIGHT VARIABILITY

Cea SENSITIVITY ANALYSIS

Quantitative sensitivity analysis by variance decomposition

 FAST method (*Fourier Amplitude Sensitivity Test,* Cukier et al. 1973)
5,500 runs
2 days of computation

Compute Sobol indicies:
S: 1st order Sobol indicies individual contribution
T: total order Sobol indices total contribution

Cea GLOBAL SENSITIVITY

Mean Sobol indicies

- **No negligible** parameters
- Strong interactions between parameters
- Many variations depending on location

CO2

SENSITIVITY TO LOCATION

longitude (*lon*)

DE LA RECHERCHE A L'INDUSTR

SENSITIVITY TO DIMENSIONS

length

SENSITIVITY TO STRIKE

Cea SENSITIVITY TO DIP

DE LA RECHERCHE A L'INDUSTRI

SENSITIVITY TO RAKE AND SLIP

rake

26th IUGG GENERAL ASSEMBLY | PRAGUE | 30 JUNE 2015 | PAGE 19

slip

SENSITIVITY TO DEPTH

26th IUGG GENERAL ASSEMBLY | PRAGUE | 30 JUNE 2015 | PAGE 21

SENSITIVITY TO DEPTH

827

SENSITIVITY TO SPATIAL DISCRETIZATION

SENSITIVITY TO SPATIAL DISCRETIZATION

Cea CONCLUSIONS

DE LA RECHERCHE À L'INDUST

Maximum water heights are overall more sensitive to some parameters than others:

- **+** longitude, rake and slip
- length of the fault, dip

Sensitivity to parameters can change significantly depending on the studied area:

- S-W France : width of the fault, slip
- West Portugal : latitude

Sensitivity to depth or spatial discretization are related to the bathymetry D

Quantify uncertainties in terms of water heights

Use finer grids near coasts and in shallow waters to investigate synthetic gages

Test the sensitivity to the precision of bathymetry (z-axis)

THANK YOU FOR YOUR ATTENTION

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Bruyères-le-Châtel | 91297 Arpajon cedex T. +33 (0)1 69 26 40 00

Etablissement public à caractère industriel et commercial R.C.S Paris B 775 685 019

MAGNITUDE DISTRIBUTION

22 PRO

DE LA RECHERCHE À L'INDUSTRI

PROMETHEE

Propagation d'incertitudes modèle d'entrée : Calypso paramètres d'entrée >échantillons aléatoires distribution des calculs sur les nœuds du cluster analyse statistique des résultats via R

INPUT PARAMETERS DISTRIBUTION

1e5

C22

SENSITIVITY TO TIME STEP

Time step

Atlantique ocean