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1. Weak Solution - In Terms of Bases
When following this concept, we start with the bilinear form

3
A(u,v) :ZI M N i1x ., where
i1 0, OX; OX;

X, 1=1,2,3 arerectangular Cartesian co-ordinates;

€2, ... is the exterior of an oblate ellipsoid of revolution of
semiaxes a and b, a >Db, whose center is in the origin,
and its axis of rotation coincides with the X;- axis.

u,v ... are functions from Sobolev’s space Wz(l) (Q2,)-

In case that f is a function from Lebesgue’s space L,(0(2,,),
we know that 1 ral identity

defines the function U uniquely and that U is the weak solution

of Neumann’s BVP.
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The integral identity above is a starting point for numerical

solution of Neumann’s BVP. Indeed, one can approximate U by
n

_ (n)
Un = ch Vi
J=1
V; are members of a function basis of W( )( £2,,,) and can look for
the coeff:c:ents C( ) by solving the respectlve Galerkin system

Zc(”)A(VJ,vk) = jkads k=1,...,n
a‘QeII

The justlflcatlon follows from the strong convergence of U, to U
as N — o, i.e. in the norm ||. ||, of Sobolev’s spaceW( (Q II)

In the sequel we take for v;, |J=1,...,n, radial symmetric
functions (elementary potentials)

1
T Vj (X) = with yJ & Qe”
| X =Y,



In connection with (2 it is natural to use ellipsoidal coordinates
u, S, 4. They are related to X, X,, X; by the equations

X, = \/u2+ E°cosBcosA, X, = \/u2+ E°cosfsind, X,=using

where E =,/a’~b”. Note that 002, is defined by U =b.

Following Hobson (1931) and explanations in Hotine (1969),
we can express V;(X) in terms of U, 5, A:

—>  V;(X) :iEi:;(Zn +1)|:Qn (2)B\(z;)R,(sin B) B,(sin B;) +

. Zi(_l)m ((n — m)!j Qun(2)Pon(Z;) Py (SIn B) Py (sin B;) cOSM(A - 2,) |

(n+m)!

where P, and Q. are Legendre functions of the 1st and the 2nd
kind, respectively; while Z=1iu/E , Z; = iuj/E and i=./-1.We
suppose U; <U, which guarantees the convergence of the series.
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2. Elements of Galerkin’s Matrix
Recall first that Greens’ identity alternatively yields

oV
—  Aw=-[, v S

where dS = a\/b2+ E®sin“Scos 3 dS dA is the surface element
of our ellipsoid. It is clear that for U =D we need the derivative of
Q. in the direction of its outer unit normal n,. Referring to
Holota (2001), we can write

aQnm(zo) _ _ b(n"'l)Q:m(ZO) ,
N a\/ b2+ E%sin’p

where
n—m+1

Z,(n+1)

Qrtm (ZO) = Qnm (ZO) T

and z, =ib/E.

C2n+1,m (ZO)



The apparatus we prepared makes it possible to compute that

A (V) = 4”b2(n+1)(2n+1)[Ao,kPn(snnﬂ )P, (sin 3,) +
(1)

+2 ZL(n _m)ll Ahmjk an(Sin/Bj) an(Sin/Bk)COS m(ij _ﬂk):|

(n+m)!

where

'Ahmjk = Qnm(ZO)Q:m(ZO) an(zj) an(zk)

and U; <b, u, <b according to our assumption.



3. Approximation of the Elements

The problem now is to express the factors A]mjk. We need a
representation of the functions P, and Q__. It turned out that
the following formulas

(2n)!

i (2) = 2"nl(n—m)!

n
(22—1)2F _n—m’_n+m,_2n—1; 12
2 2 2 1-z

2"nl(n+m)! ™M m+m+l n—m+1 2n+3 1
Qnm(z):(_l)m ( ) (22_1) ’ F( . sz

(2n+1)! 2 2 2 '1-

where F(«, 3,7, X) is the hypergeometric function, are the most
suitable, see Holota (2001).



Passing to hypergeometric series, we can compute that

A 1 (n+m)! ] 1 Oln{lJr(ner+1)(n—m+1) 1
" en+1)? | (n-m)!| z2-1 2n+3 1-7

+(n+m+1)(n—m+1) 1 ~(n-m)(n+m)| 1 N 1 L
(n+)@n+3) 2 Jz22-1  22n-1) |1-z} 1-%

where

_|_

\/z —1\/zk—1 \/u +E2\/uk+E2

For U;, U, close to b one can deduce that within an accuracy in
brackets up to terms multiplied by e*

q:

JN— S (n+m)! 0|1 g2 2n+1 n(n+1)-3m?
me @l 2+ [(n-m)! n+1 (2n+3)(2n-1)
see Holota (2001).




Moreover, denoting by W i the angular distance of points
(B;,4;) and (5, 4) on a sphere, when [ and A are interpreted
as spherical latitude and longitude, respectively, we can apply
the well-known Legendre addition theorem and we arrive at an
approximation of A, (v;,V,) given by

— 'A\jll(Vj’Vk):Ae(lll)(Vj’Vk)_ez'A\e(lzl)(Vj’Vk) (2)
where
Arh & +1
Wy v )=—— "P (cosi -
—_— Aell( j k) a2 g 2n+lq n( l//jk)
and
—> Ae(lzl)(Vka):
® | 02P (cosw ) | (3)
:4—ﬂzbz nn -+ q"| P,(cosy ) + 3 n( Zl/jjk)
a® —=((2n+3)(2n-1) n(n+1) oA

with



2
0°P, (cosy/ ) _ d*P,(cosy,) (ﬁcoswjk) N dP, (cosy ) &°cosy, (4)

OA; d(cosy ) oA, deosy ;04

OCOSY

=sIny ; Sina;, CoS S, (5)

a ;. denoting the azimuth reckoned from the north at the vertex

(B 4) and
o%cosy

04

=sIn f;sin i, — CoSy (6)
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4. Spherical Term
In the following we approach the term Aéﬁ) and split it as follows

Al (vJ,vk)—z—qu P(coswjk)+2—ﬂb8(1)
n=0
where s :iiq”Pn (cosy )
~2n+1 J

The summation of the first series is easy. It is enough to recall
the definition of Legendre functions and we immediately see that

N 1
Zoqnpn(cosl;”]k):t , where L:\/l_quOSl//Jk-l‘qz
n=

cf. e.g. Hobson (1931), Hotine (1969) or Heiskanen and Moritz
(1967).

Thus we have to concentrate on the series in SW. Its compu-

tation leads to an elliptic integral.
11



Indeed, referring to Holota and Nesvadba (2014), we can write
that

o0 1 ) 1 -1
s0-y L g Pn<cosw,-k>=§(tan§j F(kg)

with FK,p

)~ j\/1 k°sin“e

where ( was replaced by a new variable ¢ € (0, 7/2) according
to

g=tan’(p/2) while k*=cos*(y /2)

and F (K,@) is the Legendre (incomplete) elliptic integral of the
1st kind. Thus we have

2 bl b h
ATV =7 T (tan;”j F(k.)
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5. Ellipsoidal Term
For A;z') we first apply Legendre’s differential equation

d°P (cosw ) 2cosw ., dP (cosw.
n( l//Jg) === ¥ ik n( ij) B n(nz+1) Pn(COSij)
d(cosy ) sin“y;, dcosy SIN“y
This in combination with Egs (3) - (6) yields

47
Al (V;,v) = —(ajksfz) +3bjk8§2)) , where

a2
' nZ:;*(zn+3)(2n—1)q n(005V/j)

> Séz) :i 1 q dR, (cosy )
= (2n+3)(2n-1) d cosy

a; =1-3sin’a; cos’f, and
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5.1. Summation of the S Term
For this summation we use the following decomposition

51(2): 1 + 3 (A_EBJ , Where %ZanPn(COSWik)
n=0

AL 16 q
= 1 |
A=> ———q"P,(cos and B = P (cosy,
%2 . q ( Wlk) §2n+3q n( Wlk)
Concerning A , it is easy to verify that
dA 1 1
T A=
dg 2q 2qL

which is an elementary differential equation. Its general solution is

A:C(l//jk)\/a_l_\/aj \/17L d

where C(/;, ) is an arbitrary function of .
In the integral we apply the substitution =1 ! and get
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v

—dt with L= \/1 2tcosw1k+t

jqudq_ I

which is an elliptic integral. To express it in a trigonometric form
we replace t by a new variable ¢ €{x/2, 7 )according to

t =tan*(p/2).

After some algebra we arrive at

j\/f

Tat=2 tan%\/l—kzsinng +I\/l

40 5[ /1-K%in%p di
k?sin® J\/ sin'p d

with k? = Cosz(gujk [ 2) as above.

Putting now ¢ =7 —¢ , we can see that ¢ (0, 7/2) and
that q=tan°(¢/2). Subsequently, one can verify that
C(w ) =0 and that
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A=—/1-k%sin%p +%[]—"(k,gp)—28(k,gp)] tan% with

%
g(k,(p):N1—kzsin2¢ do
0

Recall that F (K, ) is the Legendre (incomplete) elliptic integral
of the 1st kind as already introduced above
and £(k,p) is the Legendre (incomplete) elliptic integral of the

2nd kind.

Concerning B, we can refer to Holota and Nesvadba (2014)
again and thus can immediately write that

1

6= 1-Ksin‘p + 2 an2] (7o) 26k )
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5.2. Summation of the S Term
First we recall the following well-known formula

dP, (cosy/ ... ) COSY/ . 1
oo o=+ Ry (cosy) - (14D Ry (cosy)
COSY i S 7% S 7%

Hence after some algebra we can deduce that

1
Sl2) = s'cosy ., —S" where
: Sinzl//jk [ Yk }
& n+1 "
———— G = P (cosy . and
2 ons3)2n-1) n (COSYj)

- n+1 N
—_— = P_,(cosy.
nZ:;;(zn+3)(2n—1)q 1 (COSY/ )

Moreover, one can verify that the following decomposition holds
1 1 .
” 5'=§(3A+—Bj and similarly 5”25(3511_'_52),
q
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where
H Sf: ianPnJrl(COSW'k) and Sg = i ! ann+1(COSW'k)
n=0 2n—1 J =0 2N+ 3 .

Thus it remains to treat the series in the S" term.
For s/, we in addition apply the well know recursion formula

2n+1 n
P .(cosy) = cosy P.(cosy)——P, ,(cos
4 (cosy) g Cosv  (cosy) — 1 (Cosy)

This enables to deduce that

4 1
S = _COSWJkZ—q P(COSWJk)"‘BCOSW.kZTq P (cosy ) —
n= O n=0
1 = 1 n+1 1 c 1 n+1
—— P.(cosy )——= ) ——Qq P, (cos
327n 71  (cosyy, ) anc‘;m q""R, (cosy )

Hence, referring to our results above, to Holota and Nesvadba
(2014) and to Pick, Picha and Vyskocil (1973), we have
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L+Qg—-cCcosy,
S£'=%Acosw,-k+icoswjkln 17V 15w

3q 1-cosy 3
L+q—cosy
N L +cosy In | Y ik
3q 1-cosy
or
" 4 g (1) L -1
S, =—AcoSy ; ——S" ———
1 3 ij 3q

For Sg the approach is more simple. We modify the index N and get

y ~ 1 1 1 1 1 1.0
S, = P, (cosy; )=——+— P (cosy )=——+—3S
2 §2n+3q n+1( ij) q qn:02n+1q n( ij) q q

in view of the result in Section 4. In consequence

2
s :E[4ACOSI//jk ALY —Lj
8 g q
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6. Approximation Computation
of Galerkin’s Element

1
A (Vi V)

In this section A, (V;,V,) computed on the basis of Eq. (2) and
formulas derived in Sections 3 - 5 is compared with Ae”(vj,vk)
(exact) computed from Eq. (1). For the ellipsoid of parameters
given by GRS80 the difference is illustrated by

‘ 5'A\ell(vjivk):|:'6\ell(vj1vk)_A\:II(Vj1Vk):|

in Figs 1 and 2.

In the figures y; was taken for the moving point and Y, for
the fixed point with f=0" and A=0". It is assumed that
u; =u, =U<b.

One can see the use of A, (v;,V,) will enable an efficient
implementation of the weak solution concept in Earth’s gravity
field studies.
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Figure 1. 6A,(v;,Vv,) foru;, =u, =0.99b, i.e. y; and Y,
ca 64 km under the ellipsoid.
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-3000 -2000 -1000 0 1000 2000 3000
Figure 2. 5A,(v;,Vv,) foru; =u, =0.96b, i.e. y, and y,
ca 260km under the ellipsoid.
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Thank you for your attention !
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